
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-274

OpenAD: Algorithm Implementation User Guide

by

J. Utke

Mathematics and Computer Science Division

Technical Memorandum No. 274

04/16/2004

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory,
is operated by The University of Chicago under Contract W-31-109-ENG-38.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor The
University of Chicago, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately-owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof.

Available electronically at http://www.doe.gov/bridge
Available for a processing fee to U.S. Dept. of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062

phone: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

ii

Contents

Abstract 1

1 Introduction 1

2 Current State of OpenAD Development 3

2.1 Representation of the Numerical Kernel . 3

2.2 Basic Functionality and Higher-Level Algorithms 4

2.2.1 Linearization . 5

2.2.2 Basic Block Preaccumulation . 6

2.2.3 Taping the Basic Block Preaccumulation 7

2.2.4 Adjoint of the Taped Basic Block Preaccumulation 7

2.2.5 Reversing the Control Flow Graph 8

2.2.6 Reversing the Basic Block Preaccumulation 8

2.2.7 Heuristics for Minimizing Operations and Data Locality 9

2.3 Parsing and Unparsing . 9

3 User Extensions to Algorithms 10

3.1 Algorithm Objects . 10

3.2 Algorithm Invocation . 11

3.3 Algorithm Factories . 11

3.4 Algorithm Factory Instantiation . 12

3.5 Algorithms and Inheritance . 13

3.6 Algorithm Inheritance and Unparsing . 13

3.7 Algorithm Object Interactions . 14

3.8 Linearization as Case Study . 14

3.8.1 Expression Edge . 15

3.8.2 Expression Vertices . 15

3.8.3 Expression . 15

3.8.4 Assignment . 16

3.8.5 Invocation . 17

4 Conclusion 17

References 17

iii

OpenAD: Algorithm Implementation User Guide

J. Utke

Abstract

Research in automatic differentiation has led to a number of tools that implement
various approaches and algorithms for the most important programming languages.
While all these tools have the same mathematical underpinnings, the actual implemen-
tations have little in common and mostly are specialized for a particular programming
language, compiler internal representation, or purpose. This specialization does not
promote an open test bed for experimentation with new algorithms that arise from
exploiting structural properties of numerical codes in a source transformation context.

OpenAD is being designed to fill this need by providing a framework that allows
for relative ease in the implementation of algorithms that operate on a representation
of the numerical kernel of a program. Language independence is achieved by using an
intermediate XML format and the abstraction of common compiler analyses in Open-
Analysis. The intermediate format is mapped to concrete programming languages via
two front/back end combinations. The design allows for reuse and combination of al-
ready implemented algorithms.

We describe the set of algorithms and basic functionality currently implemented in
OpenAD and explain the necessary steps to add a new algorithm to the framework.

1 Introduction

This paper focuses on the implementation of automatic differentiation (AD) via source
transformation, with the specific goal of implementing advanced schemes for the calcula-
tion of derivatives using checkpointing for various reversal schemes. We briefly discuss the
theoretical aspects of AD as they relate to the algorithms introduced. For a detailed intro-
duction to the theory and practice of AD, the interested reader should particularly consider
[5] but also [6, 2, 3].

The basic approaches for the implementation of AD tools can be categorized as op-
erator overloading and source code transformation. The AD community generally agrees
that many advanced AD algorithms should use information typically available to compil-
ers. Consequently, source transformation tools built in a compiler context should be the
implementation environment of choice.

The code representing the computation of a numerical function f : IRn 7→ IRm is
analyzed and augmented to compute not only f itself but also derivative information,
which in typical applications includes gradients and Jacobian or Hessian projections. The
analyses needed for the code augmentation are similar to analyses performed by compilers
for code optimization.

Source-to-source transformation tools usually have a tight coupling to a compiler- and
language-specific internal representation (IR). This has obvious benefits in allowing direct
access to compiler- and language-specific optimizations and shortcuts. Little emphasis is
placed on providing an interface for algorithm extensions and implementation of new algo-
rithms to the AD community. Consequently, any such attempt to implement new algorithms

1

Open
Analysis

whirl
Open64

SageTo
XAIFXAIF

xerces
boost
Angel

whirlTo

Sage3
EDG/front − ends

OpenAD
XAIF

xaifBooster
(source transformation &
AD algorithms)

Figure 1: Dependencies between the front ends, OpenAnalysis, and OpenAD components

in different languages or compilers requires familiarity with the specifics of a compiler’s IR.
In an academic setting this proved too steep a hurdle for contributors outside a tool’s
original developer group.

The Adjoint Compiler Technology & Standards1 (ACTS) project has a twofold goal.
One goal is to provide a framework that allows relatively easy algorithm implementation
and testing. This framework is called OpenAD. The other goal is to implement an adjoint
compiler advanced enough to handle the computationally challenging applications of the
MIT general circulation model2. This compiler will be derived as one instantiation of the
algorithms implemented in the OpenAD framework. The main components as of this time
are shown in Figure 1 in the gray box. Language-specific front ends (Open643 for Fortran
and EDG4/Sage 35 for C/C++) parse the code into their specific IRs.

x1 = x1 · cos(x1 · x2) A1

y1 = sin(x1) A2

y2 = x1 · x2 A3

Figure 2: Code for f

The OpenAD framework contains conversion com-
ponents that extract the numerical kernel of the
source code computing f and translates the ker-
nel to a language-independent XML representa-
tion called xaif 6. The translation includes the re-
sults of common analyses performed in OpenAnal-
ysis7. The AD-specific analysis and transformation
are encapsulated in the xaifBooster component. On return, the transformed xaif
is sent back to the translator components, which create source code in the orig-
inal programming language in conjunction with the compiler front ends. So far
the development of OpenAD has concentrated on a group of techniques that center on
the preaccumulation of local Jacobians of all basic blocks by using a near-minimal num-
ber of arithmetic operations. Consider a basic block to be represented by the associated
computational graph, a directed acyclic graph.

1 See www.autodiff.org/ACTS.
2 See mitgcm.org.
3 See hipersoft.cs.rice.edu/open64.
4 See www.edg.com.
5 See www.llnl.gov/CASC.
6 See www.mcs.anl.gov/xaif.
7 See www.hipersoft.rice.edu/openanalysis.

2

y

x

x

y
21

1

c2 x2

x1

1

v2 c1

x2 x1

x2x1

Figure 3: G

For example, the basic block with three assignments A1,2,3 in
Figure 2 implements the vector function y = f(x) : IR2 → IR2,
with the corresponding computational graph shown in Figure 3.
The linearization of G associates local partial partial derivative
with its edges; see [5]. Reuse of intermediate values leads to
a breakup of the assignments original right-hand sides; see Fig-
ure 4. Subsequent application of eliminations E1−E7 in G (see
[7]) imply chain rule operations on the local partial derivatives
until all elements of the Jacobian J =

(
∂yj

∂xi

)
i,j=1,2

are computed.

In Figure 4 we employ vertex elimination according to the lowest
Markowitz degree.

The OpenAD framework provides access to various elimina-
tion techniques on vertices, edges, and faces; see [9]. The order of
elimination steps in G is crucial for the number of operations in-
curred and thereby contributes to the efficiency of the generated
derivative code. Minimizing the operations count presents a hard combinatorial problem.
Through heuristics implemented in OpenAD and access to external libraries, we provide a

v1 = x1 · x2 A11 c3 = c1 · x1 E1

c1 = − sin(v1) ∂x1
∂v1

c4 = v2 + c3 · x2 E2

v2 = cos(v1) A12 c5 = c3 · x1 E3

v3 = x1 · v2 A13 J1,1 = c2 · c4 E4

c2 = cos(v3) ∂y1
∂x1

J1,2 = c2 · c5 E5

y1 = sin(v3) A2 J2,1 = x2 · c4 E6

y2 = v3 · x2 A3 J2,2 = x2 · c5 E7

Figure 4: Code for f and J

set of algorithms for computing near-optimal orderings for a given code [1, 10].

2 Current State of OpenAD Development

The development of the OpenAD framework is in progress. The IR at its core and some
fundamental algorithms are stable and are briefly described in the following sections. In
Section 3 we provide a short guide on extending the available functionality with new algo-
rithms. For downloading all necessary components and build instructions, please contact
the authors. The software design decisions made during the development are explained in
more detail in [11]. The following contains numerous references to the code base of OpenAD.
For the sake of brevity in this paper we use some abbreviations that have their full name
listed in Table 1.

2.1 Representation of the Numerical Kernel

For the transformation of numerical codes it is sufficient to represent the numerically rel-
evant portions and their connecting structures. The intermediate format xaif represents
these necessary elements.

3

Table 1: Abbreviations and full names in the code
Adir xaifBooster/algorithms

Aname some algorithm name to be used
Ans algorithm namespace (naming convention: xaifBoosterAname)
cIR name of an IR element class, e.g. Assignment, Expression

genTrav genericTraversal

GTI GenericTraverseInvoke

travTo traverseToChildren

CallGraph

CallGraphEdge

CallGraphVertex

ControlFlowGraph

ControlFlowVertex

ControlFlowEdge

BasicBlock

ForLoop

PreLoop

PostLoop
If

Expression

VariableReference

VariableReferenceEdge

VariableReferenceVertex

Graph

Vertex:class
Edge:class

<CallGraphVertex,CallGraphEdge>

Vertex

Edge

<VariableReferenceVertex,VariableReferenceEdge>

<ExpressionVertex,ExpressionEdge>

<ControlFlowVertex,ControlFlowEdge>

ExpressionVertex

ExpressionEdge

Intrinsic

FunctionCall

Constant

SymbolReference

ArrayReference

ScopeHierarchy<Scope,ScopeEdge>

Scope

ScopeEdge

Figure 5: Inheritance hierarchy

The xaifBooster IR in turn closely
resembles the respective structures
one would find in a compiler’s IR.
It is implemented as a hierarchy of
C++ classes using the boost graph
library8 and the Standard C++ Li-
brary9. Figure 5 shows a simplified
inheritance hierarchy. The classes
representing IR elements are named
in a fairly self-explanatory fashion.
The class hierarchy is most eas-
ily browsed through the doxygen10

html pages that can be generated
through make doc and can be found in
xaifBooster/system/doc/html. The IR
class hierarchy uses composition of its
elements from top down. The top el-
ement is a single CallGraph instance.
Figure 6 shows a simplified composi-
tion hierarchy. This defines ownership
of any dynamically allocated elements
as well. Where possible, the interfaces
avoid the need for explicit dynamic al-
location of members outside the meth-
ods of the containing class. Only in
cases of containment of polymorphic elements is explicit dynamic allocation necessary. In
such cases the container class interface indicates the assumption of ownership of the dy-
namically allocated elements being supplied to the container class. An example is the graph
class Expression accepting vertex instances that can be Constant, Intrinsic , and so forth;
see also Section 3.5.

2.2 Basic Functionality and Higher-Level Algorithms

The basic functionality provided in the IR consists of the following:
8 See www.boost.org.
9 See gcc.gnu.org/libstdc++.

10 See www.doxygen.org.

4

CallGraphVertex

ControlFlowGraph

ForLoopPreLoopPostLoop If

Condition

Initialization

Update
Expression

Assignment

LHS RHS

VariableReference

Graph

Vertex:class
Edge:class

Vertex Edge

Scope

SymbolTable

Symbol

Figure 6: Composition hierarchy

• Parsing from and unparsing to xaif; see also Section 2.3.

• Building the IR as a C++ class hierarchy with hooks for user implementable algo-
rithms; see also Section 3.

• Passes through the IR in a compiler-like fashion.

• Parsing and building of a catalogue of intrinsics (InlinableIntrinsicsCatalogue)
along with their respective local partial derivatives. The catalogue can be extended
by users to include user-defined intrinsics.

• Basic debugging and logging facilities.

Based on the IR, we have built the following algorithms.

2.2.1 Linearization

A1 : z = −(z ∗ x)
A2 : y = z/x

1

/

−

*

*

/

−

2

z

z x

z x

y

GA

A2

1

Figure 7: Simple flattening

We already referred to linearization in Sec-
tion 1 and will use it as an example for algo-
rithm implementation in Section 3.8. For each
Assignment we create assignments for the respec-
tive local partial derivatives using the informa-
tion in the intrinsics catalogue. This approach
may lead to splitting the original assignment into
multiple assignments in order to reuse interme-
diate values needed for the derivatives. The lin-
earization also includes the reduction of the as-
signment’s right-hand side expression graph to
the active portions. This localized activity anal-
ysis is usually not done by the compiler analy-
sis. The linearization also handles possible alias-
ing of the right-hand side to any input in the
left-hand side by delaying the assignment to the
left-hand side until after all partials have been
computed.

5

2.2.2 Basic Block Preaccumulation

The basic block preaccumulation algorithm uses linearization through inheritance. The ap-
plication of elaborate elimination techniques in computational graphs offers an advantage
only if the computational graph contains more than a single right-hand side of an assign-
ment.11 The combination of multiple right-hand sides in a computational graph (also known
as flattening) uses alias and def/use chain information provided by OpenAnalysis through
the front end.

A simple example is shown in Figure 7. Ambiguities are resolved through segmentation
of the computational graph into unambiguous subgraphs. Each subgraph is a structural
representation with back references to its generating assignments. Once a sequence of un-
ambiguous subgraphs is built, the algorithm invokes an external mechanism that, using
various heuristics, produces an efficient elimination sequence in terms of the edges of the
subgraph; see Figure 8. Based on this elimination sequence, a series of assignments is gener-
ated whose right-hand sides each represent an elimination step. Finally, the resulting Jaco-

*

/

−
* +

*
*

Figure 8: Jacobian accumulation expressions

bian entries are the factors in saxpy operations that implement a (sparse) Jacobian/vector
or vector/Jacobian product. In the example we show three elimination steps where the
second step represents the Jacobian entry ∂y

∂x and the third step ∂y
∂z . Currently the front-

end-generated code uses a special type that has a tangential derivative component v̇ for
each active variable v.

The corresponding initialization and saxpy(a, x, y) operations (y = a ∗ x + y) in the

ẏ = 0̇
saxpy(∂y

∂x , ẋ, ẏ)
saxpy(∂y

∂z , ż, ẏ)

Figure 9: Propagation

example are shown in Figure 9. The algorithm handles
possible aliasing between inputs and outputs of the re-
spective subgraph through explicit assignment to tem-
poraries. These temporary assignments and all initial-
ization and saxpy operations are contained in special
xaif elements under DerivativePropagator. A support
library implementing the derivative type and all related
operations allows for a direct forward mode using the preaccumulated local Jacobians.

A different driver version, which pushes these local Jacobian entries along with the
saxpy operations onto a stack, allows for a split reverse mode [5] and, in particular, a direct
combination of the forward/reverse run using the same code base. The reversal relies on
popping the saxpy operations from the stack and executing an adjoint interpretation. This
algorithm uses the libraries created in Adir/CrossCountryInterface for the subgraph rep-

11 The single expression use property of stand-alone right-hand sides leads to a known optimal elimination
sequence.

6

resentation and the library created in Adir/DerivativePropagator for the representation of
the DerivativePropagator elements. The elimination sequence is computed by the external
ANGEL (Automatic Differentiation Nested Graph Elimination) library.12 The code can
be found in Adir/BasicBlockPreaccumulation.

2.2.3 Taping the Basic Block Preaccumulation

Our third algorithm is similar to that described in Section 2.2.2, with the difference that,
instead of letting the run-time support library reinterpret certain saxpy operations as pushes
to a stack (also called tape), we insert an explicit push for all variable Jacobian entries.13

inline push(∂y
∂x)

inline push(∂y
∂z)

Figure 10: Taping

The respective push calls for the example in Sec-
tion 2.2.2 are shown in Figure 10. To allow for a variety
of taping and checkpointing storage formats and to main-
tain language independence, we require the front end to
handle inlinable subroutine calls. Doing so avoids the over-
head associated with subroutine calls. The actual code to
push and pop values from a stack representation is language specific. In the xaif the inlin-
able subroutine calls have partial argument lists that contain only the information related
to the numerical kernel. The taping itself is useful only in the context of a reversal scheme;
see Section 2.2.6. One possible reversal scheme uses an enclosing code template to con-
trol the invocation of taping, checkpointing, and adjoint versions of any given subroutine
within the code for f ; see Figure 13. This wrapping code contains logic providing access
to the stack. Thus, the stack-related parameters of the inlinable subroutines are handled
by the front end without involvement of the xaif. This algorithm extends the functional-
ity of the basic block preaccumulation through inheritance and uses the library created in
Adir/InlinableXMLRepresentation for representing inlinable subroutine calls. The code can
be found in Adir/BasicBlockPreaccumulationTape.

2.2.4 Adjoint of the Taped Basic Block Preaccumulation

inline pop(t1)
inline saxpy(t1, ȳ, z̄)
inline pop(t2)
inline saxpy(t2, ȳ, x̄)
ȳ = 0̄

Figure 11: Adjoining

A fourth algorithm, built on top of the algorithms in Sec-
tions 2.2.2 and 2.2.3 through inheritance, creates adjoint
code for a given basic block in terms of the preaccumu-
lated Jacobians. This is done by reversing the order of all
DerivativePropagators and their contained operations and
replacing each operation with its respective adjoint equiv-
alent in the shape of an inlinable subroutine call. Each
push created in Section 2.2.3 is replaced by its equiva-
lent pop inlinable subroutine element. The respective operations for the example in Sec-
tion 2.2.2 are shown in Figure 11. Again the implementation uses a special type that has
an adjoint derivative component ā for each active variable a. The code can be found in
Adir/BasicBlockPreaccumulationTapeAdjoint.

12 See angellib.sourceforge.net.
13 We note that constant Jacobian entries can be generated directly in the adjoint code.

7

2.2.5 Reversing the Control Flow Graph

Our fifth algorithm takes the control flow graph (CFG) of a given subroutine and pro-
duces its reverse representation. For a structured CFG [8] the reversal essentially requires

1: ENTRY

2: BASICBLOCK

3: BRANCH

4: BASICBLOCK

0: BASICBLOCK

5: FORLOOP

6: BASICBLOCK

1

0: BASICBLOCK

0: BASICBLOCK

8: BASICBLOCK

0: BASICBLOCK

9: ENDBRANCH

10: BASICBLOCK

11: EXIT

1

7: ENDLOOP

0: BASICBLOCK

-11: ENTRY

-10: BASICBLOCK

0: BASICBLOCK

-9: BRANCH

-8: BASICBLOCK

0: BASICBLOCK

1

-3: ENDBRANCH

-7: FORLOOP

-6: BASICBLOCK

1

-4: BASICBLOCK

-5: ENDLOOP

11

-2: BASICBLOCK

-1: EXIT

Figure 12: Augmented (left), reversed (right) CFG

a redirection of the edges and a reinterpretation of the nodes such that, for instance, a
“for” loop end turns into a “for” loop begin and a branch node becomes a merge node
(and vice versa). The algorithm augments the code created in Section 2.2.3 to include
new basic blocks containing statements that record a particular path through the CFG by
pushing condition values and loop bounds onto a stack. Consequently, the reverse CFG
has the respective statements that pop those values from the stack and thereby find the
corresponding reverse path through the reversed CFG. In Figure 12 we show a sample CFG
in its augmented and reversed versions.14 The augmenting basic blocks are marked with
“0”; all other vertices have a number marker. Their equivalents in the reversed CFG have
the respective negative marker. The edge labels indicate condition values. The code can be
found in Adir/ControlFlowReversal.

2.2.6 Reversing the Basic Block Preaccumulation

Our sixth algorithm involves the integration of the transformations produced by the al-
gorithms in Sections 2.2.3, 2.2.4, and 2.2.5 representing a particular version from the set
of possible adjoint codes. We note that this is not the reverse mode in the usual strict
definition of elemental partials but rather a reverse mode through the preaccumulated Ja-
cobians. Whether this approach yields increased efficiency depends on the application. A
comparison of this reversal mode with other derivative computing schemes in AD and a
characterization of favorable scenarios are beyond the scope of this paper.

14 This is debugging output produced by OpenAD using boost together with the graphviz utility; see
www.research.att.com/sw/tools/graphviz/.

8

R_foo(x,z,y,control) {
Stack* stack=getStack();
switch (control) {
case tape: // linearize and tape

t_1=-(z.v*x.v); // A_1_1
t_2=z.v; // local partial
z.v=t_1; // A_1_2
y.v=z.v/x.v; // A_2
t_3=-1/(x.v)^2; // local partial
t_4=-1*t_3; // eliminations
t_5=z+t_4*t_2; // dy/dx
t_6=t_4*x.v; // dy/dz
*stack++=t_5; // push
*stack++=t_6; // push

case reverse:
t_1=*--stack; // pop
z.d+=t_1*y.d; // adjoint saxpy
t_2=*--stack; // pop
x.d+=t_1*y.d; // adjoint saxpy
y.d=0; // adjoint overwrite

}
}

Figure 13: Reversal

As mentioned in Section 2.2.3, we rely on
code templates to enclose the different transfor-
mations of the original code that each underly-
ing algorithm produces. For brevity we show
some C-style pseudo-code in Figure 13 that
roughly resembles the output to be expected if
the example code from Section 2.2.2 is wrapped
in some subroutine foo(x,z,y) and transformed
to R foo(x,z,y,control) and active types have
a value component v and a derivative compo-
nent d. For a “split” mode, R foo would be
called with control=tape and subsequently with
control=reverse. These calls would be part of
the adjoint code generated for the caller of R -

foo. The adjoint code generation for subroutine
calls as part of this algorithm is coupled with
checkpointing schemes and is also beyond the
scope of this paper. The code can be found in
Adir/BasicBlockPreaccumulationReverse.

2.2.7 Heuristics for Minimizing Operations and Data Locality

Our last algorithm replaces the call to the ANGEL library used in Section 2.2.2 to generate
an elimination sequence by its own implementation of some elimination techniques and
heuristics. It reuses the algorithm in Section 2.2.2 and the interface defined by the library
in Adir/CrossCountryInterface. The emphasis is on heuristics that not only minimize the
operations count but also consider data locality. The latter is obviously significant for the
run time of the generated code and is a step toward similar optimizations a compiler might
perform.

The hierarchy of algorithms implemented so far and the ability to reuse algorithms indicate
that the chosen design represents a workable solution. Assuming relative stability of the
interfaces of these algorithms and the IR the same ability to reuse algorithms should extend
to the greater AD community. In Section 3 we briefly introduce the essential coding steps
for algorithm implementation.

2.3 Parsing and Unparsing

Parsing is done through the Xerces C++ XML parser15 such that the XML element handler
implementations build the IR from the top down. XAIFBaseParser implements the parsing.
It has to be initialized using initialize(), and a subsequent call to parse() supplying the
name of the input xaif file builds the IR. According to the schema we expect a single, not
necessarily connected, call graph. The call graph instance is associated with the single-
ton ConceptuallyStaticInstances from which we can access it via getCallGraph(), which
is used by the parser and any driver code. InlinableIntrinsicsParser is the equivalent

15 See xml.apache.org/xerces-c.

9

parser for the InlinableIntrinsicsCatalogue. The unparsing from the IR back into the
xaif is performed through calls to reimplementations of XMLPrintable::printXMLHierarchy.
A schema-compliant xaif file requires unparsing from the top-level call graph object. For
details on the invocations, see Section 3.6.

3 User Extensions to Algorithms

An algorithm is implemented in its own namespace by a set of algorithm classes associated
with classes in the IR. In the following sections we describe the necessary steps to implement
a user algorithm in abstract terms, with examples referring to existing implementations.

Note: By convention the user creates a new directory Adir/Aname and chooses Ansas the
namespace for the algorithm.

3.1 Algorithm Objects

Every relevant class named cIR in the xaifBooster IR has a pointer to an algorithm instance
of cIRAlgBase, which is the binding naming convention for all algorithm base classes. All
constructors of cIR have a bool parameter makeAlgorithm, which defaults to true. The
respective constructor definitions contain code that instantiates the algorithm object via a
factory (see Section 3.3), as in the following example.

Assignment::Assignment(bool theActiveFlag,
bool makeAlgorithm) :

myRHS(makeAlgorithm), myAssignmentAlgBase_p(0), myActiveFlag(theActiveFlag) {
if (makeAlgorithm)

myAssignmentAlgBase_p=AssignmentAlgFactory::instance()->makeNewAlg(*this);
}

The cIR destructor is responsible for deleting the instance. All cIRAlgBase objects have a
back reference to their containing cIR instance accessible via getContaining(). As a rule, all
objects in the IR created during the parsing of the input-xaif are created with their respec-
tive algorithm instance. A cIR instance may not need an associated algorithm instance when
it is instantiated in an algorithm itself. For example the member myDelayedLHSAssignment p

of xaifBoosterLinearization::AssignmentAlg is used to represent an additional assignment
as the result of the transformation steps performed by the linearization process and is not
itself subject to the transformation process applied to the original assignments. This mech-
anism avoids potentially costly instantiations. It does not directly determine which object
instances take part in an algorithm invocation; see also Section 3.2.

The naming convention for all specific algorithm classes is cIRAlg, and they are distin-
guished by namespace. The namespace xaifBooster is reserved for OpenAD utilities and the
IR.

Note: In namespace Ans the user creates a new cIRAlg for each cIR in the IR for which
analysis and transformations need to be implemented; see also Section 3.2.

This approach limits the implementation overhead for any modification, since we require
only new code for the cIR to be modified.

10

3.2 Algorithm Invocation

We expect algorithms to operate in a compilerlike fashion that involves analysis and mod-
ifications during one or more passes through the IR and the associated algorithm objects.
This process is facilitated by virtual methods in class GTI. All relevant cIR objects in the
IR inherit from GTI and all leaf classes implement at least the traverseToChildren method,
which determines the traversal through the IR. As a rule, the traversal proceeds first to the
algorithm object associated with cIR, followed by its direct children, namely, the elements
of the IR that are members of cIR, as in the following example.

void Assignment::travTo(const GenericAction::GenericAction_E anAction_c) {
getAssignmentAlgBase().genTrav(anAction_c); // traversal to algorithm
myRHS.genTrav(anAction_c); // traversal to right hand side
myLHS.genTrav(anAction_c); // traversal to left hand side

}

Each unit of work is to be accomplished by a particular pass; the passes are enumerated
ALGORITHM ACTION [1,2,...] in GenericAction and stand for the invocation of the respective
virtual methods GTI::algorithm action [1,2,...]. The default implementation for these
methods is empty, and as a rule no cIR or cIRAlgBase reimplements any action. The diagram
in Figure 14 illustrates the setup. While the cIRAlgBase instances are mere placeholders,

Assignment
-myAlgBase_p: AssignmentAlgBase*
+travTo(action)

AssignmentAlgBase
+travTo(action)

GTI
+travTo(action)
+genericAction(action)
+algorithm_action_1()
+algorithm_action_2()

myAssignmentAlgBase_p

genericAction(action){
 switch(action){
 ALGORITHM_ACTION_!:
 algorithm_action_1();
 ALGORITHM_ACTION_2:
 algorithm_action_2();
 // and so on }
 traverseToChildren(action);
}

travTo(action){
 getAssignmentAlgBase().
 genTrav(action);
 // etc.
}

travTo(action) {
 // no children,
 // do nothing
}

AssignmentAlg
+algorithm_action_1()

algotithm_action_1() {
// the implementation
}

Figure 14: Passing through IR

the derived cIRAlg classes implement the action appropriate for each pass.

Note: The user reimplements algorithm action [1,2,...] where needed as entry points for
the algorithms analyses and transformations, as explained in Section 3.1.

3.3 Algorithm Factories

All cIRAlg objects are instantiated through their respective factories, by convention named
cIRAlgFactory. Each cIR with a cIRAlgBase has a corresponding cIRAlgFactory. This is the
root base class for all derivations Ans::cIRAlgFactory; see also Section 3.5. The declaration
and definition of these factory classes are highly repetitive. At the moment we use macros
for the declaration and definition of these classes, as in the following example.

11

#include "xaifBooster/system/inc/AssignmentAlgFactory.hpp"
#include "xaifBooster/algorithms/Linearization/inc/AlgFactoryManager.hpp"
DERIVED_ALG_FACTORY_DECL_MACRO(Assignment,

xaifBooster::AssignmentAlgFactory,
xaifBoosterLinearization);

The algorithm class declaration refers to its super class and the algorithm-specific factory
manager (see Section 3.4), which necessitates the two includes. The class definition is
similar.

#include "xaifBooster/system/inc/AssignmentAlgBase.hpp"
#include "xaifBooster/system/inc/Assignment.hpp"
#include "xaifBooster/algorithms/Linearization/inc/AssignmentAlgFactory.hpp"
#include "xaifBooster/algorithms/Linearization/inc/AssignmentAlg.hpp"
DERIVED_ALG_FACTORY_DEF_MACRO(Assignment,xaifBoosterLinearization);

The algorithm class definition refers to cIR, cIRAlgBase, Ans::cIRAlgFactory and its own
declaration, which necessitates the four includes. All macro definitions can be found in
xaifBooster/system/inc/AlgFactory.hpp.

Note: Following the above patterns, the user implements Ans::cIRAlgFactory for each
cIRAlg created in Section 3.1.

BasicBlockAlg

AssignmentAlg

BasicBlockAlgBase

AssignmentAlg

AssignmentAlgBase

ExpressionAlgBase

ExpressionAlg

ExpressionEdgeAlgBase

ExpressionEdgeAlg

ExpressionVertexAlgBase

ArgumentAlgBase

IntrinsicAlgBase

ExpressionVertexAlg

ArgumentAlg

IntrinsicAlg

...

...

namespace xaifBooster

xaifBoosterLinearization

xaifBoosterBasicBlockPreAccumulation

Figure 15: Algorithm inheritance IR

3.4 Algorithm Factory Instantiation

Initially all algorithm objects are instantiated through factories during the parsing of the
xaif. The factories instantiating the cIRAlgBase objects represent the default factory set.
Any algorithm supplying a cIRAlg needs to replace the default factory with its own respective
factory. This is done in an algorithm-specific AlgFactoryManager class, which needs to
reimplement the init method, as in the following example.

void AlgFactoryManager::init() {
// default factory set
xaifBooster::AlgFactoryManager::init();
// replace default for ArgumenAlg
resetArgumentAlgFactory(new ArgumentAlgFactory());
// replace default for AssignmentAlg
resetAssignmentAlgFactory(new AssignmentAlgFactory());
// etc.

}

12

As a rule, the reimplementation calls the init of the respective parent(s) (see also
Section 3.5) and then replaces its specific factories. Any code using the algorithm needs to
instantiate the AlgFactoryManager and call init before the parsing of the input xaif.

Note: Following the above pattern, the user implements Ans::AlgFactoryManager.

3.5 Algorithms and Inheritance

VariableReference

ExpressionVertex

Intrinsic

Constant
VariableReferenceAlgBase

ExpressionVertexAlgBase

IntrinsicAlgBase

ConstantAlgBaseVariableReferenceAlg

ExpressionVertexAlg

IntrinsicAlg

ConstantAlg

Figure 16: Mirroring inheritance

Algorithms should be reusable in different con-
texts. For example, the linearization of a given
code is needed for the preaccumulation of Ja-
cobians in a basic block, which in turn can be
reused for a reverse mode that operates on preac-
cumulated Jacobians. The primary vehicle for
reuse is inheritance of the algorithm objects,
which implies inheritance in the associated fac-
tories and the factory manager class. In Fig-
ure 15 we show the inheritance and the partial
replacement in an example. The same figure also
illustrates another issue, mirroring inheritance
of cIR objects the IR in the respective cIRAlg

objects. An example is the hierarchy of all expression vertices, which can be constants,
intrinsics, and the like; see Figure 16.

3.6 Algorithm Inheritance and Unparsing

As algorithms replace certain portions of the IR, the unparsing has to refer to an algorithm-
specific version. Therefore, each cIR in IR implements printXMLHierarchy according to the
pattern in the following example.

void
Assignment::printXMLHierarchy(std::ostream& os) const {

if (myAssignmentAlgBase_p)
getAssignmentAlgBase().printXMLHierarchy(os);

else
printXMLHierarchyImpl(os);

}

The template implementation for all cIRAlgBase simply refers to the code that contains
the unparse logic in cIR::printXMLHierarchyImpl. The reimplementation in
Ans::cIRAlg::printXMLHierarchy typically refers to the algorithm-specific entity that rep-
resents the transformation, as in the following example.

void
AssignmentAlg::printXMLHierarchy(std::ostream& os) const {

if (mySSAReplacementAssignmentList.size()) {
for (std::list<Assignment*>::const_iterator li=mySSAReplacementAssignmentList.begin();

li!=mySSAReplacementAssignmentList.end();
++li)

(*li)->printXMLHierarchy(os);
// ... etc.

}

13

Note: Any cIRAlg representing a transformation of its corresponding cIR instance needs to
reimplement printXMLHierarchy.

An issue with algorithm inheritance and unparsing arises when one wants to unparse
multiple representations of the same IR element but at different levels of the algorithm
inheritance hierarchy. In this case one has to break the virtual method invocation, which
would always use the leaf class implementation, and code a scheme with invocations via
explicit function pointers instead. A practical example can be found in the implementation
described in Section 2.2.6.

3.7 Algorithm Object Interactions

The traversal mechanism introduced in Section 3.2 strictly follows top down or bottom up in
the IR hierarchy bound to the virtual methods in GTI. Any algorithm code requiring access
from cIR

AAlg to cIR
BAlg uses the back references from cIR

AAlg to cIR
A via getContaining().

With few exceptions, the respective getContaining() methods return const references. This
is intended to emphasize the rule that no algorithm should modify the objects in the original
IR but only data encapsulated in the algorithm objects. The objective is to lessen the
dependencies between algorithm implementations. Once we have the cIR

A reference, we
traverse the IR hierarchy explicitly to cIR

B, obtain the algorithm base class handle to
cIR

BAlgBase via getcIR
BAlgBase(), and cast to the proper subclass Ans::cIR

BAlg. For most
cIR objects the top-down hierarchy provides explicit traversal top down only. Back references
to the containing elements are the exception. As a logical consequence, transformations on
a hierarchy level resulting in the creation or deletion of IR elements at the same level need to
be rooted at the higher level of the containing element. For example, an algorithm seeking
to remove certain vertices from an expression graph based on a vertex specific activity flag
needs to be rooted at the containing expression.

The generic traversal mechanism itself does not support the passing of data between
cIRAlg instances. If different cIRAlg instances have to communicate across different
algorithm action [1,2,...], one can use established programming patterns [4] such as ex-
ternal (thread safe) containers to hold the data.

3.8 Linearization as Case Study

In Sections 1 and 2.2.1 we explained the purpose of the linearization of a given code. In
the following we use linearization as a case study for an algorithm implementation. First
we define the set of cIR that will be subject to the linearization transformation.

• We attach partial derivatives to the edges in expression graphs representing right-hand
sides of assignments → modifies ExpressionEdge.

• We analyze right-hand-side expressions to identify passive subexpressions by attach-
ing an activity flag to expression vertices. The analyzing methods operate on expres-
sions. → modifies ExpressionVertex and all its subclasses and implements analysis
on Expression.

14

• We create a copy of the right-hand-side expression and remove the passive subexpres-
sions. The copy is attached to the algorithm object associated with the assignment
in question. → modifies Assignment.

This describes the set of the cIRAlg that need to be implemented; see also Figure 15.

3.8.1 Expression Edge

The ExpressionEdgeAlg class has four additional data members:

• A reference to the formal expression for the partial derivative as provided by the
intrinsics catalogue; see Section 2.2 (myPartialDerivative p)

• A list mapping formal arguments in the expression for the partial derivative to actual
arguments in this expression (myConcreteArgumentInstancesList)

• The assignment that has the concrete expression for the partial derivative as the
right-hand side (myConcretePartialAssignment p)

• A flag indicating the category of the partial ranging from NONLINEAR to PASSIVE

(myConcretePartialDerivativeKind)

Aside from get/set methods, this class contains no additional logic pertaining to the algo-
rithm.

3.8.2 Expression Vertices

We need a common algorithm base class for all expression vertices (ExpressionVertexAlg).

• Activity analysis inside a right-hand side requires a flag on each vertex (myActiveFlag).

• The computation of the partials may require some intermediate values as inputs,
and therefore those intermediate values need to be assigned to temporary variables
(myAuxilliaryVariable p). While this applies only to Intrinsic vertices, the trans-
formation output is generated via the base class.

• We eventually need to build the entire assignment of which myAuxilliaryVariable p

is the left-hand side of myReplacementAssignment p.

In ExpressionVertexAlg we encapsulate the allocation/deallocation of the last two data
members. All derived algorithm classes differ only in their initialization with respect to the
activity flag.

3.8.3 Expression

In ExpressionAlg we encapsulate the following.

15

• We track the usage of Argument vertices in partial derivative computations in a list
called myPartialUsageList. This is used to determine exactly when we need a delay
in assigning the left-hand side of the parent assignment in cases where the left-hand
side aliases any argument in the right-hand side

• We create expressions for the partial derivative computation in a method called
createPartialExpressions(). This happens in conjunction with tracking the argu-
ment use and determining which intermediates need to be saved in a two-pass fashion
through the expression graph after activity analysis is performed. The activity anal-
ysis marks passive subgraphs that we can ignore. The first pass determines which
intermediates have to be saved for the partial computation based on the argument
usage information in the InlinableIntrinsicsCatalogue. The second pass generates
a concrete expression from the formal expression for the respective partial derivative
by replacing the formal arguments with the concrete arguments as determined in the
previous pass and assigning the result to another temporary.

• The activity analysis is implemented as a bottom-up pass through the expression
graph in activityAnalysis().

3.8.4 Assignment

AssignmentAlg is the entry point for the linearization algorithm. This class illustrates a
few issues with the algorithm implementation. From the previous it is apparent that new
assignments are created, and therefore one might expect that the entry point should be
the basic block according to Section 3.7. However, all new assignments being created have
a unique parent assignment in the original IR. This association allows lowering the entry
point to the assignment level. For the sake of reuse in other algorithms, the linearization is
split in two phases.

1. algorithm action 1(): First we copy the original right-hand side into the data mem-
ber myLinearizedRightHandSide. Given the implementation of algorithm objects for
the entire right-hand side, we would not have to make this copy if we were to stop
with linearization. Obviously the linearization is only a building block for other algo-
rithms. These reusing algorithms have to change the structure of the right-hand side,
and therefore the linearization has to be performed on a copy because as a rule we do
not modify the original IR; see Section 3.7. On the copy we run the activity analysis
provided by ExpressionAlg. This requires the copy to be created with the associated
algorithm objects. If the entire right-hand side is determined to be passive, then the
assignment’s left-hand side is marked passive as well. Note that most compiler-style
analysis will simply propagate activity based on the activity of the arguments. Here
we allow in particular for passivating intrinsics.

2. algorithm action 2(): This method iterates through the right-hand side and creates
the respective replacement assignments associated with the expression vertices and the
partial derivative assignments associated with the expression edges. The creation of
the replacement assignments is somewhat complex as the algorithm has to determine
subgraphs in the expression that have a given maximal node and has minimal nodes

16

that are determined by the maximal nodes of preceding subgraphs. This is done by
nested recursions; see localRHSExtractionOuter and localRHSExtractionInner

The unparsing of the transformed representation is done in printXMLHierarchy, which refers
to myLinearizedRightHandSide. It first unparses the replacement assignments for expression
edges, followed by the assignments that compute the partial derivatives, potentially followed
by the delayed assignment to the right-hand side in case of aliasing to the left-hand-side
arguments.

3.8.5 Invocation

The factory manager and factory classes are written following the patterns shown in Sec-
tions 3.3 and 3.4. The linearization can be run as illustrated in the associated test example.
The factory manager is instantiated and initialized with
xaifBoosterLinearization::AlgFactoryManager::instance()->init();

The parsing is done as explained in Section 2.3. The algorithm invocation is simply two
passes from the call graph object.

CallGraph& Cg(ConceptuallyStaticInstances::instance()->getCallGraph());
Cg.genericTraversal(GenericAction::ALGORITHM_ACTION_1); // analyze
Cg.genericTraversal(GenericAction::ALGORITHM_ACTION_2); // generate code

This is followed by the unparsing, as explained in Section 2.3.

4 Conclusion

Implementing an entire program’s IR, including parsing and unparsing, is a considerable
effort that poses a steep hurdle to anybody interested in manipulating low-level numerical
structures. With OpenAD we remove this obstacle and provide the possibility for a com-
paratively quick implementation of source transformation algorithms. It is not intended
as a replacement for fully compiler-integrated AD that can use the results of algorithmic
research done in OpenAD but would, as a matter of commercial product development,
ensure complete language coverage and the like. Instead, OpenAD is geared toward an aca-
demic audience with an emphasis on algorithmic experimentation and handling of specific
computationally challenging applications that require finely tuned advanced algorithms.

In presenting the implemented algorithms and the linearization as a use case, we show
that OpenAD fulfills the needs of a test bed for experimentation. The application to the
MIT general circulation model is subject to further algorithm development.

References

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-type heuristics for com-
puting Jacobian matrices efficiently. In Proceedings of International Conference on
Computational Science, volume 2658 of Lecture Notes in Computer Science, pages 575
–584, Berlin, 2003. Springer.

17

[2] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differenti-
ation: Techniques, Applications, and Tools. SIAM, Philadelphia, 1996.

[3] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms: From Simulation to Optimization. Computer and Infor-
mation Science. Springer, New York, 2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
Reading, MA, 1995.

[5] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, 2000.

[6] A. Griewank and G. Corliss, editors. Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, 1991.

[7] A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markowitz
rule. In A. Griewank and G. Corliss, editors, [6], pages 126–135. SIAM, Philadelphia,
1991.

[8] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco, 1997.

[9] U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on
the dual computational graph. Math. Prog., 99(3):399–421, 2004.

[10] U. Naumann and P. Gottschling. Simulated annealing for optimal pivot selection in Ja-
cobian accumulation. In A. Albrecht and K. Steinhöfel, editors, Stochastic Algorithms:
Foundations and Applications, volume 2827 of Lecture Notes in Computer Science,
pages 83–97. Springer, 2003.

[11] J. Utke and U. Naumann. Software technological issues in automating the semantic
transformation of numerical programs. In M. Hamza, editor, Software Engineering and
Applications, Proceedings of the Seventh IASTED International Conference, pages 417
–422, Anaheim, Calgary, Zurich, 2003. ACTA Press.

18

	Abstract
	1 Introduction
	2 Current State of OpenAD Development
	2.1 Representation of the Numerical Kernel
	2.2 Basic Functionality and Higher-Level Algorithms
	2.2.1 Linearization
	2.2.2 Basic Block Preaccumulation
	2.2.3 Taping the Basic Block Preaccumulation
	2.2.4 Adjoint of the Taped Basic Block Preaccumulation
	2.2.5 Reversing the Control Flow Graph
	2.2.6 Reversing the Basic Block Preaccumulation
	2.2.7 Heuristics for Minimizing Operations and Data Locality

	2.3 Parsing and Unparsing

	3 User Extensions to Algorithms
	3.1 Algorithm Objects
	3.2 Algorithm Invocation
	3.3 Algorithm Factories
	3.4 Algorithm Factory Instantiation
	3.5 Algorithms and Inheritance
	3.6 Algorithm Inheritance and Unparsing
	3.7 Algorithm Object Interactions
	3.8 Linearization as Case Study
	3.8.1 Expression Edge
	3.8.2 Expression Vertices
	3.8.3 Expression
	3.8.4 Assignment
	3.8.5 Invocation

	4 Conclusion
	References

